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SUMMARY

This study proposes a new two-step three-time level semi-Lagrangian scheme for calculation of particle
trajectories. The scheme is intended to yield accurate determination of the particle departure position,
particularly in the presence of significant flow curvature. Experiments were performed both for linear
and non-linear idealized advection problems, with different flow curvatures. Results for simulations with
the proposed scheme, and with three other semi-Lagrangian schemes, and with an Eulerian method are
presented. In the linear advection problem the two-step three-time level scheme produced smaller root
mean square errors and more accurate replication of the angular displacement of a Gaussian hill than the
other schemes. In the non-linear advection experiments the proposed scheme produced, in general, equal or
better conservation of domain-averaged quantities than the other semi-Lagrangian schemes, especially at
large Courant numbers. In idealized frontogenesis simulations the scheme performed equally or better than
the other schemes in the representation of sharp gradients in a scalar field. The two-step three-time level
scheme has some computational overhead as compared with the other three semi-Lagrangian schemes.
Nevertheless, the additional computational effort was shown to be worthwhile, due to the accuracy obtained
by the scheme in the experiments with large time steps. The most remarkable feature of the scheme is its
robustness, since it performs well both for small and large Courant numbers, in the presence of weak as
well strong flow curvatures. Copyright q 2009 John Wiley & Sons, Ltd.
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1. INTRODUCTION

As computational resources have become more powerful, numerical weather prediction models
have rapidly advanced to represent smaller scales of atmospheric motions. Global models are
reaching mesoscale resolution and more detailed structures have been able to be represented by
those models. Even though the cost of high performance computers has become lower in time,
there is still a need for efficient numerical methods that will take full advantage of these new
platforms, without compromising the accuracy in the replication of complex and detailed flow
structures.

Following the pioneering works of Wiin-Nielsen [1] and Sawyer [2], Robert [3] proposed the
semi-Lagrangian method, which has been recognized as an efficient technique to be employed
in atmospheric models, which allows for the use of time steps longer than those limited by the
Courant–Friedrichs–Levy (CFL) condition. The main feature of the method is the use of the
Lagrangian frame of reference, where the material derivatives of the dependent variables are
calculated in the model equations by following the trajectory of the fluid particles. In the semi-
Lagrangian method the final position of a fluid particle is coincident with a grid point, and the
trajectory of a fluid particle is calculated with the use of some backward in time numerical scheme.
Therefore, the method combines the advantage of a regular distribution of the grid points in the
model domain characteristic of Eulerian methods, with unconditional numerical stability with
respect to advection of Lagrangian methods.

One of the problems of the semi-Lagrangian method pointed out by Purser and Leslie [4] is
the difficulty in accurately determining the departure points of the trajectories of fluid particles in
regions where the flow is strongly curved, when using long time steps. This paper addresses this
problem, by proposing a new semi-Lagrangian scheme which intends to improve the accuracy of
the computation of the trajectory of the fluid particles, particularly in situations where there is a
pronounced curvature in the flow.

In Section 2 some background information on the semi-Lagrangian method is presented, as well
as the details of the proposed two-step three-time level scheme. Section 3 describes the problems
that will be used to evaluate the performance of the scheme. The results of the numerical experi-
ments performed with the use the proposed scheme and with three other semi-Lagrangian schemes
are analyzed in Section 4. Section 5 discusses the results and presents the conclusions of the study.

2. THE SEMI-LAGRANGIAN METHOD

2.1. Background

The semi-Lagrangian method was initially applied to the numerical solution of weather forecasting
problems based on the vorticity conservation equation

D�

Dt
=0 (1)

where � is the absolute vorticity. Equation (1) expresses that � is conserved following the fluid
particles i.e. in the Lagragian frame of reference. Winn-Nielsen [1] was the first to propose a
method to integrate (1) in Lagrangian coordinates but he found a serious problem, that was the
rapid distortion of an initially uniform computational domain. Sawyer [2] proposed then that
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the fluid elements that would be followed along the flow would be changed during the integration,
eliminating the ones that moved out of the domain and including new particles to keep a complete
representation of the domain. This method was called semi-Lagrangian. In both aforementioned
methods the future positions of the fluid particles had to be determined to allow for the calculation
of the material derivative expressed by (1).

Robert [3] introduced a variation to Sawyer’s semi-Lagrangian method by which the future
positions of the fluid particles were coincident with the grid points and their positions in the previous
time step were calculated, using a backward in time scheme. With this change the advantage of a
regular distribution of fluid elements characteristic of Eulerian methods could be associated with
the computational efficiency of the Lagrangian methods.

In three-time level schemes the material derivative of a variable q is calculated by using the
following approximation:

Dq

Dt
∼= q(r(t+�t), t+�t)−q(r(t−�t), t−�t)

2�t
(2)

In two-time level schemes the material derivative is approximated as

Dq

Dt
∼= q(r(t+�t), t+�t)−q(r(t), t)

�t
(3)

In both the schemes, r(t+�t) is the position vector of the fluid particle at time t+�t , which is
chosen to be coincident with a grid point.

Durran [5] presents a detailed analysis of the stability properties of the two-time level scheme
(3) showing that the scheme is unconditionally stable with respect to advection. Robert [3] demon-
strated that the three-time level scheme of Equation (2) is also unconditionally stable. Another
feature of the semi-Lagrangian method pointed out by Durran is that it prevents the occurrence
of non-linear instability due to aliasing, since the non-linear advective terms are not explicitly
represented in the Lagrangian frame of reference.

The accuracy of the semi-Lagrangian method will depend on errors introduced in two stages of
its implementation: the determination of the departure point of the trajectory of the fluid particle
and the interpolation of the value of the variable at that position which, in general, will not
coincide with a grid point position. However, the semi-Lagrangian method behaves differently
from Eurelian methods, since error is not monotonic with respect to time step size �t . The overall
error of semi-Lagrangian schemes has the form [6]

O

(
�tk+ �x p+1

�t

)
(4)

where k is the order of the time integration scheme and p is the order of the spatial interpolation.
According to (4) as �t increases, the number of interpolations needed to integrate the equations

for a certain time interval decreases. If the second term is the dominating one, the overall error
will decrease for larger time steps. On the other hand, as �t increases, the first term in (4) may
become the dominating one and in that case the overall error will increase for increasing �t .

Purser and Leslie [4] point out that in situations where the flow is strongly curved, the semi-
Lagrangian approach does not perform well due to the fact that the location of the particle departure
point is subject to time truncation errors, even when high-order accuracy spatial discretization
is employed. They state that several methods have been proposed to reduce the truncation error
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in time and most of them take the form of backward in time high-order extrapolations. Those
methods, however, should not be expected to be as accurate as those using time interpolations
from solutions at both end points of each trajectory.

Several authors have proposed two- and three-time level schemes for calculation of fluid particle
trajectories. Durran [5] and Staniforth and Côté [7] present reviews of many of them. In this study
three recognized schemes will be used as reference for comparison with the proposed two-step
three-time level scheme, as follows.

2.2. Robert three-time level scheme

Robert [3] introduced a three-time level scheme for the calculation of the fluid particle trajectories
(hereafter SL3T). In two-dimensions, the position of a fluid particle at time t+�t , which is
coincident with a grid point (i, j), is represented as

r(t+�t)=(xi , y j ) (5)

and the approximation for Equation (3) will be

Dq

Dt
∼= q(xi , y j , t+�t)−q(xi −2a, y j −2b, t)

2�t
(6)

where a and b are the particle displacements along the x and y directions, respectively, during
time interval �t . Those displacements are calculated with the iterative procedure

am+1=�t ·u(xi −am, y j −bm, t) (7a)

bm+1=�t ·v(xi −am, y j −bm, t) (7b)

where m is the mth iteration, and u and v are the velocity components along the x and y directions,
respectively, at time t .

Pudykiewicz and Staniforth [8] showed that the necessary condition for convergence of the
iterative procedure of Equations (7) is

�t ·max

(∣∣∣∣�u�x
∣∣∣∣ ,

∣∣∣∣�u�y
∣∣∣∣ ,

∣∣∣∣�v

�x

∣∣∣∣ ,
∣∣∣∣�v

�y

∣∣∣∣
)

<1 (8)

Kuo and Williams [9] point out that convergence can be obtained with no more than three
iterations. Robert [3] compared the use of two and four iterations in his atmospheric model and
did not find any significant differences in the results.

A disadvantage of this method is the occurrence of noise due to the existence of a computational
mode in the solution.

2.3. McDonald and Bates two-time level scheme

McDonald and Bates [10] (hereafter SL2T) proposed the following two-time level scheme, based
on the use of the particle velocity at time t+�t/2

Dq

Dt
∼= q(xi , y j , t+�t)−q(xi −a, y j −b, t)

�t
(9)

Copyright q 2009 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2009; 61:995–1028
DOI: 10.1002/fld



PARTICLE TRAJECTORY CALCULATIONS 999

with

am+1=�t ·u∗
(
xi − am

2
, y j − bm

2
, t+ �t

2

)
(10a)

bm+1=�t ·v∗
(
xi − am

2
, y j − bm

2
, t+ �t

2

)
(10b)

Since u and v are not known at t+�t/2, the following extrapolation in time procedure is used:

u∗
(
r
(
t+ �t

2

)
, t+ �t

2

)
= 3

2
u

(
r̄

(
t+ �t

2

)
, t

)
− 1

2
u

(
r
(
t+ �t

2

)
, t−�t

)
(11a)

v∗
(
r
(
t+ �t

2

)
, t+ �t

2

)
= 3

2
v

(
r̄

(
t+ �t

2

)
, t

)
− 1

2
v

(
r
(
t+ �t

2

)
, t−�t

)
(11b)

The procedure is implemented with one iteration only. The authors claim that their method is as
accurate as the SL3T scheme, and yet more efficient, since it requires less spatial interpolations.
However, Bates et al. [11] observed the occurrence of spurious gravity waves in their shallow water
atmospheric model that employed the SL2T scheme. They believed that the problem was caused
by the evaluation of the non-linear term of the continuity equation by using the extrapolation
procedure of Equations (10). Staniforth and Côté [7] point out that this problem occurs when the
non-linear terms of the equations of motion that involve self-advection of momentum are evaluated
with the use of temporal extrapolations.

2.4. Hortal stable two-time level scheme

In order to overcome the instability problem of the SL2T scheme, which appeared as noise in
forecast fields of the ECMWF semi-Lagrangian model, Hortal [12] developed the following stable
two-time level scheme (hereafter SL2TS):

Dq

Dt
∼= q(xi , y j , t+�t)−q(xi −a, y j −b, t)

�t
(12a)

with

am+1= �t

2
[(2u∗(xi −am, y j −bm, t)−u∗(xi −am, y j −bm, t−�t))+u(xi , y j , t)] (12b)

bm+1= �t

2
[(2v∗(xi −am, y j −bm, t)−v∗(xi −am, y j −bm, t−�t))+v(xi , y j , t)] (12c)

The method uses the idea that the fluid particles are displaced along their trajectories in a
uniformly accelerated movement. In that case, the middle point of the trajectory is not at the same
point of the average between the departure and the arrival points. The total time derivative of
the velocity is assumed to be constant and it is estimated by using velocity values at the arrival
and departure points, different from the SL2T scheme that uses estimates at the midpoint of the
trajectory. The SL2TS scheme was implemented in the ECMWF operational model and the noise
problem in the forecasts was successfully eliminated.
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2.5. The two-step three-time level scheme

In two of the aforementioned schemes for determination of the particle departure point, the velocity
is kept constant during one time step (between t and t+�t for SL2T, and between t−�t and
t+�t for SL3T), and in the SL2TS scheme the particle acceleration is assumed to be constant.
The main feature of the proposed two-step three-time level scheme (hereafter SL2S3T) is to allow
both for the velocity and the acceleration vectors of the particles to vary between t−�t and t+�t .
The scheme is based upon the general idea of multistage methods [5], where each integration step
requires the estimate of the dependent variable at several intermediate times. After obtaining those
intermediate values, a final estimate of the predicted variable is obtained. An example of Eulerian
multistage methods is the family of Runge–Kutta schemes. The rationale behind the proposed
semi-Lagrangian scheme is to ‘break’ the particle trajectory into two steps. In the first step, starting
from grid point (i, j), at time t+�t , the particle is displaced backwards for a time interval �t
with the velocity calculated at an intermediate position (x∗, y∗) for time t . In the second step,
starting from the particle position at time t calculated in the previous step, the particle is displaced
backwards for another �t , with the velocity calculated for the intermediate position (x∗∗, y∗∗),
also for time t . The intermediate positions (x∗, y∗) and (x∗∗, y∗∗) are obtained by considering
displacements of the particle for a time interval �t/2.

The scheme can be expressed by the following equations:

Dq

Dt
∼= q(xi , y j , t+�t)−q(x ′′, y′′, t−�t)

2�t
(13)

where
1st step:

a∗(m+1) = �t

2
u(xi −a∗(m), y j −b∗(m), t) (14a)

b∗(m+1) = �t

2
v(xi −a∗(m), y j −b∗(m), t) (14b)

x ′ = xi −2a∗ (14c)

y′ = y j −2b∗ (14d)

and
2nd step:

a∗∗(m+1) = �t

2
u(x ′−a∗∗(m), y′−b∗∗(m), t) (15a)

b∗∗(m+1) = �t

2
v(x ′−a∗∗(m), y′−b∗∗(m), t) (15b)

x ′′ = x ′−2a∗∗ (15c)

y′′ = y′−2b∗∗ (15d)

Notice that although at each step the particle is displaced for a time interval �t , only spatial
interpolations are used, and the particle velocities refer to time t . In this way it is expected that
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in situations where a rapid change in the velocity vector occurs during the time interval 2�t the
particle is being displaced, the ‘broken’ trajectory will be able to more realistically represent such
changes when long time steps are used.

The time truncation error of the scheme can be evaluated by using the analysis procedure
described in Durran [5] as reference. We consider one dimension only. It is important to point
out that the following analysis does not consider interpolation errors, only truncation errors are
considered.

Let the estimated position of a fluid particle at time tn be x̃n(tn). We define the particle
displacements as

1st step:

�s1= x j − x̃nj =�t ·u(xn+1/2, tn) (16a)

2nd step:

�s2= x̃nj − x̃n−1
j =�t ·u(xn−1/2, tn) (16b)

where x j = xn+1 is the particle position at time tn+1, which corresponds to grid point j . Notice
that the displacement velocities are referred to the intermediate time tn . The backward trajectory
is computed from position x j with the following expression:

x̃n−1
j (tn−1)= xn+1−�s1−�s2 (17)

We expand u(xn+1/2, tn) and u(xn−1/2, tn) in the Taylor series about the estimated intermediate
position x̃nj (t

n)

u(xn+1/2, tn) = un+ �s1
2

�u
�x

(x̃nj , t
n)+O(�s21) (18a)

= un+ 1

2

�u
�x

(x̃nj , t
n) ·�t[un+O(�t)]+O(�t2) (18b)

= un+u
�u
�x

(x̃nj , t
n)

�t

2
+O(�t2) (18c)

u(xn−1/2, tn) = un− �s2
2

�u
�x

(x̃nj , t
n)+O(�s22) (18d)

= un− 1

2

�u
�x

(x̃nj , t
n) ·�t[un−O(�t)]+O(�t2) (18e)

= un−u
�u
�x

(x̃nj , t
n)

�t

2
+O(�t2) (18f)

Equalities (18b) and (18e) were obtained by substituting (16a) and (16b) into (18a) and (18d),
respectively.

Introducing (18c) and (18f) into (17) yields

x̃n−1
j (tn−1)= xn+1−2un�t−O(�t3)= xn+1−2

(
dx

dt

)n

�t−O(�t3) (19)
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Expression (19) states that the local truncation error introduced in each step of the calculation
of the departure position is O(�t3). Therefore, the global truncation error of the approximation
of the trajectory equation of the SL2S3T scheme will be O(�t2), since

(
dx

dt

)n

= xn+1− x̃n−1
j (tn−1)

2�t
−O(�t2) (20)

The time truncation errors of the SL2T, SL2TS and the SL3T schemes are also O(�t2) [7, 12].

3. TEST PROBLEMS

3.1. The linear advection problem

The first problem that will be used to evaluate the SL2S3T scheme will be the uniform circular
translation without diffusion of a function �(x, y, t). It has been already used by Pudykiewicz and
Staniforth [8] in the evaluation of the SL3T scheme. The governing equation is

D�

Dt
=0 (21)

and �(x, y, t) is a Gaussian hill, centered at (x0, y0), defined as [13]
�(x, y)= A0 exp[(R/2�x)2] (22)

where R2=(x−x0)2+(y− y0)2 is the radius of the hill base, A0 is the concentration distribution,
and �x is the grid spacing (which equals �y).

The center of the Gaussian hill moves around the center of the domain with constant
angular velocity �=Vt/Ra, where Vt is the tangential velocity of the hill base center point (x0, y0)
and Ra is the advection radius, that is, the distance between the domain center and the hill base
center point. Since the angular velocity is prescribed, the simulation results will be controlled by
the analytical solution.

3.2. The non-linear advection problem

The second problem that will be used to evaluate the SL2S3T scheme uses Arakawa and Lamb
[14] as reference. It consists of simulating a horizontal non-divergent flow, governed by the relative
vorticity (�) conservation equation

D�

Dt
=0 (23)

which is defined in terms of the streamfunction � with

u=−��

�y
(24a)

v= ��

�x
(24b)

�=∇2� (24c)

where ∇2 is the horizontal Laplacian operator.
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In its Eulerian form, Equation (23) can be written as

��

�t
= J (�,�) (25)

where J is the Jacobian operator, defined as

J (�,�)= ��

�x
��

�y
− ��

�y
��

�x
(26)

The Jacobian operator (26) has the following integral properties:

J (�,�)=0 (27a)

�J (�,�)=0 (27b)

�J (�,�)=0 (27c)

The overbar represents the domain average of a quantity, which by definition has � constant
along its boundary. Properties (27a)–(27c) imply that the mean vorticity �̄, the mean enstrophy

�2/2, and the mean kinetic energy (per unit mass) |∇�|2/2 will be conserved with time. Therefore,
it is desirable that a discretization scheme conserves those properties.

In order to avoid non-linear instability caused by aliasing, Arakawa and Lamb [14] developed
the following spatial discretization scheme for Eulerian finite difference integration schemes, which
formally conserves the quantities defined by expressions (27a)–(27c)

J (�,�)= J1+ J2+ J3
3

(28a)

J1=(�x�)(�y�)−(�y�)(�x�) (28b)

J2=�y(��x�)−�x (��y�) (28c)

J3=�x (��y�)−�y(��x�) (28d)

where

�xq= qi+1, j −qi−1, j

2�x
(29a)

�yq= qi, j+1−qi, j−1

2�y
(29b)

where i , j are the grid point indices along the x and y directions, respectively.
The semi-Lagrangian schemes in this study do not formally conserve any of the quantities

(27a)–(27c). Nevertheless, it is desirable to assess conservation characteristics of numerical schemes
in order to evaluate its suitability to atmospheric numerical simulations, especially for long ones,
such as those preformed in climate studies. The non-linear advection test problem presented here
will allow for the assessment of the conservation properties of the different semi-Lagrangian
schemes.
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3.3. The idealized frontogenesis problem

Kuo and Williams [9] state that there are many important atmospheric phenomena associated with
sharp spatial gradients, such as frontogenesis and the formation of discontinuities from unbalanced
initial conditions. The numerical solution for those scale-collapse problems requires the use of
computational methods that have the ability to accurately represent very sharp gradients. Also,
numerical errors caused by the presence of those gradients should not contaminate the smooth
solution away from the collapse region. In their paper the authors verified that semi-Lagrangian
schemes perform well in simulating scale-collapse problems with the use of long time steps.

The idealized frontogenesis problem of Doswell [15] is an appropriate test for the semi-
Lagrangian schemes presented in this paper, since it allows for the assessment of the ability of the
schemes to handle strong gradients in the presence of strongly curved flow. The problem consists
of a wind field produced by a steady state, two-dimensional, nondivergent vortex with a purely
tangential wind field VT, which is a function of the distance from the origin r , according to

VT(r)= tanh r

cosh2 r
(30)

With the wind field defined by (30), the x and y components of the flow are

u(x, y)=−VT(r)sin � (31a)

v(x, y)=VT(r)cos � (31b)

with �= tan−1(y/x) and r =(x2+ y2)1/2.
A scalar field is superimposed on the wind field and is linearly advected by it. Doswell [15]

used the following initial scalar field:

Q(x, y)=− tanh y (32)

An interesting feature of this problem is that even though the wind field is nondivergent, the
scalar field converges to the center of the wind field in an inward spiraling frontal pattern. That
causes a continuous increase of the spatial gradients of the scalar field, while the fluid particles
are advected by the circular wind field.

There are two important characteristics of this problem that will be objectively analyzed in the
experiments: the scalar field remains antisymmetric in time, therefore, the average value of the
scalar field must be constant equal to zero; and, as demonstrated by Davies-Jones [16], at the origin,
|∇Q|=1 for all times.

4. NUMERICAL EXPERIMENTS AND RESULTS

4.1. Linear advection experiments

In this study we are particularly interested in assessing the effects of flow curvature on the perfor-
mance of the semi-Lagrangian schemes. Three domains were set for the numerical experiments.
The one with smaller flow curvatures had a mesh with 99×99 grid points and Ra=25�x ; an
intermediate curvature domain was set with 67×67 grid points and Ra=17�x ; and a domain with
larger curvature was set with 33×33 grid points and Ra=8�x . For all experiments, A0=105 and

Copyright q 2009 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2009; 61:995–1028
DOI: 10.1002/fld



PARTICLE TRAJECTORY CALCULATIONS 1005

�x=�y=105m. With those parameters the function � ranges from 0 to 105. The angular velocity
for each domain was set to produce a tangential speed of the hill center |Vt|=10m/s.

Experiments were performed with the Gaussian hill rotating around the domain center, with the
time step �t adjusted to produce Courant numbers C=1.0, 2.0, 4.0, 6.0, 8.0 and 10.0, calculated by

C= |VMAX|�t
�x

√
2

(33)

where |VMAX| is the maximum speed occurring at a grid point of the domain.
Each scheme was implemented with the iterative procedure to calculate the length of the particle

displacement with two iterations at most. If after the first iteration the precision of the calculated
length was equal or better than 0.1% the second iteration was not necessary. Bicubic spatial
interpolations were used in all experiments in the interior of the domains and bilinear interpolations
along the boundaries.

For reference, Eulerian integrations using the leapfrog scheme (centered in space and time) [17],
with Courant number equal to 1.0 were performed. This numerical scheme has O(�t2) truncation
error, so it is appropriate for comparison with the semi-Lagrangian schemes presented in this study,
which are also O(�t2) accurate.

Table I presents the root mean square (RMS) errors of the � function [Equation (22)] for the
experiments with Courant number 1.0, after 1 and 10 revolutions. Results for the Eulerian method
are not presented for 10 revolutions because the simulation became unstable before reaching that
number of revolutions. It is clear that the Eulerian method presents significantly greater errors
than the semi-Lagrangian schemes, for all grids, after one revolution of the Gaussian hill. The
following analysis, therefore, will focus on only the semi-Lagrangian schemes.

Figure 1 presents the RMS errors of � as a function of the Courant number, after one, two,
four, and 10 revolutions of the Gaussian hill, obtained from the comparison of the analytical and
numerical solutions of the experiments with the 99×99 grid points domain. There is a general
tendency of the errors to decrease with increasing �t for the SL2T, the SL2TS and the SL2S3T
schemes. For the SL3T scheme the RMS errors decrease for Courant numbers less than 6.0 and
increase for values greater than that. These results are due to the nonmonotonic behavior of the
error in the semi-Lagrangian method, expressed by Equation (4). It can be seen that SL3T scheme
is more sensitive to cumulative time truncation errors, since the RMS error grows more rapidly
than for the other schemes for larger periods of integration. The simulations with the SL2T and

Table I. Root mean square errors of the � function after one and 10 revolutions of the Gaussian hill for
experiments with Courant number equal to 1.0, with the three computational domains.

Mesh Eulerian SL2T SL2TS SL3T SL2S3T

Results after 1 revolution (×104)
99×99 1.473 0.157 0.157 0.148 0.148
67×67 1.465 0.211 0.212 0.197 0.197
33×33 1.457 0.342 0.342 0.310 0.310

Results after 10 revolutions (×104)
99×99 — 0.216 0.216 0.212 0.212
67×67 — 0.309 0.309 0.302 0.302
33×33 — 0.577 0.577 0.557 0.556
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Figure 1. Root mean square (RMS) error of � as a function of the Courant number
after one (a), two (b), four (c), and 10 (d) revolutions of the Gaussian hill, for the

experiments with the 99×99 grid points mesh.

the SL2TS schemes have larger errors than those with the SL3T and the SL2S3T schemes for
shorter periods of integration and small Courant numbers. Overall, the SL2S3T scheme produces
equal or smaller RMS errors than the other schemes for the 99×99 grid.

Figure 2 shows the RMS errors of � for the experiments with the intermediate flow curvature
domain, with 67×67 grid points. Again, the SL2S3T scheme performs equally or better than the
other schemes in all cases, and the SL3T scheme is more sensitive to time truncation errors than
the other schemes for larger Courant numbers. In this case the errors produced by the SL3T scheme
started growing for Courant numbers greater than 4.0, instead of 6.0 as occurred in the 99×99
grid points mesh.

The RMS errors of � obtained in the experiments with the 33×33 grid points domain, which
displays a more strongly curved flow, are presented in Figure 3. In this case all schemes show an
initial decrease followed by an increase in the RMS error, for increasing �t . The SL3T scheme
is more sensitive to time truncation errors, since for Courant numbers greater than 2.0 the RMS
error increases very fast with increasing �t . The SL3T scheme is also the one where cumulative
errors are more significant. In this case the SL2S3T scheme also performs equally or better than
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Figure 2. Root mean square (RMS) error of � as a function of the Courant number
after one (a), two (b), four (c), and 10 (d) revolutions of the Gaussian hill, for the

experiments with the 67×67 grid points mesh.

the SL2T and the SL3T schemes in all cases. The SL2TS scheme has RMS errors smaller than
the SL2S3T scheme only for very large Courant numbers, after 10 revolutions.

Notice that the SL3T and the SL2S3T schemes show approximately equal errors for Courant
numbers 1.0 and 2.0 in all experiments. Also, it is apparent that the RMS errors increase for
increasing flow curvature.

Following Pudykiewicz and Staniforth [8] accuracy and conservation properties of the schemes
were also analyzed. Tables II–IV present the values of the following quantities calculated for the
experiments with the 99×99, the 67×67, and the 33×33 grid points meshes, respectively, for
experiments with Courant numbers 1.0, 4.0, and 10.0, after one and 10 revolutions: the maximum
(�MAX) and minimum (�MIN) values of the � function, to evaluate numerical dispersion; the
ratio of the sum of the grid point values of � to the initial sum (

∑
�i j/

∑
�i j (0)), to evaluate

conservation of the � field (‘mass’ conservation); percentual loss of �, defined as 1 minus the ratio
of the sum of the squares of the grid point values of � at a certain time to the sum of the squares of
the initial values of �[1−(

∑
�2
i j/

∑
�2
i j (0))], to assess the amplification/damping properties of

the schemes. The tables also present the correlation between the values of � produced by the
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Figure 3. Root mean square (RMS) error of � as a function of the Courant number
after one (a), two (b), four (c), and 10 (d) revolutions of the Gaussian hill, for the

experiments with the 33×33 grid points mesh.

numerical and analytical solutions, which will help to evaluate the angular displacement (phase)
errors produced by schemes.

The results of the experiments with the 99×99 grid points mesh, presented in Table II, show
that the SL2T and the SL2TS schemes produced negative values larger (in magnitude) than the
SL3T and the SL2S3T schemes after one revolution, which indicates that the latter schemes have
less numerical dispersion than the others for shorter integration periods. For longer integrations,
the SL3T scheme performed better than the others. Regarding the maximum values of �, the SL3T
and the SL2S3T schemes have about the same performance, which was better than for the SL2T
and the SL2TS schemes.

The percentual loss of � results show that the SL3T scheme has better ‘mass’ conservation than
the others.

The ratio between the sums of squares of � show that for Courant numbers 1.0 and 4.0 the SL3T
and the SL2S3T schemes produced similar results, both better than the SL2T scheme. However,
for Courant number 10.0 the SL2S3T scheme performed better than the other schemes. The errors
produced by the SL2TS scheme are smaller only for Courant number 4.0.
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Table II. Maximum and minimum values of the � function, conservation properties, and correlation
between analytical an numerical solutions, after one and 10 revolutions of the Gaussian hill in experiments

with Courant number equal to 1.0, 4.0 and 10.0 with the 99×99 grid points mesh.

Scheme �MAX (×105) �MIN (×104) 100×[1−(
∑

�i j/
∑

�i j (0))] (%)
∑

�2
i j/

∑
�2
i j (0) Correlation

Results after 1 revolution
Courant number=1
Eulerian 0.266 −1.750 −0.768E+00 1.007 0.257
SL2T 0.313 −0.180 0.158E−01 0.407 0.800
SL2TS 0.313 −0.180 0.177E−01 0.407 0.800
SL3T 0.345 −0.162 0.129E−02 0.441 0.827
SL2S3T 0.345 −0.162 0.956E−02 0.441 0.827

Courant number=4
SL2T 0.503 −0.170 0.328E+00 0.605 0.919
SL2TS 0.549 −0.182 −0.101E+02 0.729 0.915
SL3T 0.597 −0.135 0.820E−01 0.701 0.951
SL2S3T 0.600 −0.132 0.137E+00 0.700 0.954

Courant number=10
SL2T 0.577 −0.189 −0.140E+02 0.750 0.928
SL2TS 0.584 −0.142 0.666E+00 0.702 0.954
SL3T 0.732 −0.085 −0.636E−02 0.814 0.953
SL2S3T 0.696 −0.141 −0.831E+01 0.834 0.971

Results after 10 revolutions
Courant number=1
SL2T 0.116 −0.082 0.223E+00 0.158 0.538
SL2TS 0.116 −0.082 0.190E+01 0.158 0.537
SL3T 0.129 −0.083 −0.776E−01 0.177 0.565
SL2S3T 0.129 −0.083 0.297E−02 0.176 0.565

Courant number=4
SL2T 0.201 −0.177 0.806E+01 0.261 0.686
SL2TS 0.267 −0.157 −0.316E+02 0.463 0.676
SL3T 0.260 −0.114 0.823E+00 0.337 0.660
SL2S3T 0.260 −0.180 0.652E+01 0.336 0.741

Courant number=10
SL2T 0.293 −0.195 −0.490E+02 0.578 0.635
SL2TS 0.261 −0.168 0.108E+02 0.323 0.717
SL3T 0.362 −0.131 0.875E−01 0.462 0.101
SL2S3T 0.366 −0.210 −0.347E+02 0.633 0.712

The correlation values give an indication of the phase errors of the simulations. It can be seen
that as the Courant number increases the correlations increase for short periods of integration for all
schemes. On the other hand, for longer integrations the SL3T scheme shows significantly smaller
correlations for longer time steps. In all cases, the SL2S3T scheme shows higher correlation values
than the other schemes, except for 10 revolutions with Courant number 10.0, where the SL2TS
scheme was slightly better.

Figure 4 shows analytical and numerical solutions after 10 revolutions of the Gaussian hill
in the 99×99 grid points mesh, for the experiment with Courant number equal to 4.0. The hill
center positions simulated by the SL2T, the SL2TS, and the SL2S3T schemes are closer to the
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Table III. Maximum and minimum values of the � function, conservation properties, and correlation
between analytical an numerical solutions, after one and 10 revolutions of the Gaussian hill in experiments

with Courant number equal to 1.0, 4.0 and 10.0 with the 67×67 grid points mesh.

Scheme �MAX (×105) �MIN (×104) 100×[1−(
∑

�i j/
∑

�i j (0))] (%)
∑

�2
i j/

∑
�2
i j (0) Correlation

Results after 1 revolution
Courant number=1
Eulerian 0.324 −1.928 −0.289E+01 1.007 0.322
SL2T 0.363 −0.199 0.231E−01 0.464 0.839
SL2TS 0.363 −0.199 0.328E−01 0.464 0.839
SL3T 0.399 −0.173 0.333E−02 0.502 0.864
SL2S3T 0.399 −0.173 0.155E−01 0.502 0.864

Courant number=4
SL2T 0.555 −0.164 0.857E+00 0.662 0.943
SL2TS 0.544 −0.152 0.206E+01 0.632 0.940
SL3T 0.660 −0.119 −0.126E−01 0.756 0.968
SL2S3T 0.652 −0.116 0.461E+00 0.753 0.970

Courant number=10
SL2T 0.645 −0.111 0.398E+01 0.731 0.963
SL2TS 0.652 −0.112 0.201E+01 0.749 0.969
SL3T 0.780 −0.063 −0.237E+00 0.858 0.918
SL2S3T 0.761 −0.062 0.199E+01 0.835 0.986

Results after 10 revolutions
Courant number=1
SL2T 0.138 −0.099 0.688E+00 0.187 0.580
SL2TS 0.138 −0.999 0.158E+01 0.187 0.579
SL3T 0.155 −0.098 0.838E+00 0.210 0.609
SL2S3T 0.155 −0.099 0.953E+00 0.209 0.609

Courant number=4
SL2T 0.227 −0.142 −0.196E+02 0.335 0.680
SL2TS 0.223 −0.161 0.351E+01 0.287 0.702
SL3T 0.305 −0.120 −0.101E+00 0.392 0.732
SL2S3T 0.295 −0.157 0.619E+01 0.385 0.784

Courant number=10
SL2T 0.275 −0.117 0.333E+02 0.237 0.447
SL2TS 0.296 −0.123 0.193E+02 0.314 0.691
SL3T 0.422 −0.137 −0.129E+01 0.534 −0.023
SL2S3T 0.385 −0.133 0.185E+02 0.399 0.714

analytical solution than the position obtained with the SL3T scheme. The spreading of the hill
is more significant in the SL2T and the SL2TS solutions, whereas the SL3T and the SL2S3T
solutions showed similar distributions of the � field. All schemes approximately preserved the
circular shape of the Gaussian hill.

Table III presents numerical results of the simulation with the 67×67 grid points domain,
which has flow trajectories with curvatures greater than those of the 99×99 grid points mesh. The
SL2T and the SL2TS schemes showed less numerical dispersion than the SL3T and the SL2S3T
schemes after 10 revolutions in the simulation with Courant number 10.0. In all other cases they
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Table IV. Maximum and minimum values of the � function, conservation properties, and correlation
between analytical an numerical solutions, after one and 10 revolutions of the Gaussian hill in experiments

with Courant number equal to 1.0, 4.0 and 10.0 with the 33×33 grid points mesh.

Scheme �MAX (×105) �MIN (×104) 100×[1−(
∑

�i j/
∑

�i j (0))] (%)
∑

�2
i j/

∑
�2
i j (0) Correlation

Results after 1 revolution
Courant number=1
Eulerian 0.482 −2.320 −0.191E+01 1.006 0.469
SL2T 0.474 −0.219 −0.587E+00 0.581 0.903
SL2TS 0.474 −0.220 −0.611E+00 0.581 0.902
SL3T 0.513 −0.181 −0.270E+00 0.621 0.922
SL2S3T 0.513 −0.182 −0.372E+00 0.621 0.922

Courant number=4
SL2T 0.664 −0.131 0.270E+01 0.737 0.972
SL2TS 0.665 −0.130 0.840E+00 0.749 0.972
SL3T 0.735 −0.084 −0.125E+00 0.841 0.979
SL2S3T 0.752 −0.082 0.126E+01 0.828 0.987

Courant number=10
SL2T 0.744 −0.797 0.171E+02 0.698 0.936
SL2TS 0.717 −0.712 0.793E+01 0.775 0.972
SL3T 0.851 −0.027 −0.339E+01 0.951 0.625
SL2S3T 0.794 −0.031 0.903E+01 0.831 0.976

Results after 10 revolutions
Courant number=1
SL2T 0.190 −0.139 −0.515E+01 0.248 0.668
SL2TS 0.190 −0.139 −0.562E+01 0.249 0.667
SL3T 0.215 −0.130 −0.703E+01 0.284 0.695
SL2S3T 0.215 −0.131 −0.640E+01 0.282 0.697

Courant number=4
SL2T 0.269 −0.124 0.194E+02 0.270 0.788
SL2TS 0.287 −0.128 0.621E+01 0.329 0.803
SL3T 0.391 −0.135 −0.509E+01 0.500 0.536
SL2S3T 0.368 −0.133 0.953E+01 0.415 0.859

Courant number=10
SL2T 0.160 −0.078 0.854E+02 0.032 −0.016
SL2TS 0.274 −0.118 0.572E+02 0.148 0.286
SL3T 0.568 −0.125 −0.427E+02 0.959 −0.035
SL2S3T 0.365 −0.162 0.609E+02 0.186 0.172

produced larger (in magnitude) negative values. The differences between the results of the SL3T
and the SL2S3T schemes were less significant than in the case of the 99×99 grid points domain.
In general, the results were better in the greater curvature domain.

The SL3T and the SL2S3T solutions had better ‘mass’ conservation properties than the SL2T
ones, with a slightly better performance of the SL3T scheme for one revolution. In general the
‘mass’ loss (values >0) and ‘mass’ creation (values <0) errors were larger (in magnitude) in this
domain than those obtained for the 99×99 grid points mesh. For longer integrations none of the
schemes was clearly better than the others.
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Figure 4. Analytical (solid lines) and numerical (dashed lines) solutions using the SL2T scheme
(a), the SL2TS scheme (b), the SL3T scheme (c) and the SL2S3T scheme (d) after 10 revolutions
of the Gaussian hill, for the experiments with the 99×99 grid points mesh with time step set

to produce Courant number equal to 4.0.

The SL3T and the SL2S3T schemes presented smaller damping of the solution than the SL2T
and the SL2TS schemes.

The correlations of the analytical and the numerical solutions for the experiments with Courant
numbers equal to 1.0 and 4.0 showed improvement in comparison with the results of the experiments
with the 99×99 grid points domain. However, in the experiments with Courant number equal to
10.0 the SL3T scheme presented correlation values significantly lower than those for the larger
domain. The SL2S3T scheme performed equally or better than the other schemes in all cases.

Figure 5 shows the analytical and numerical solutions obtained after 10 revolutions of the
Gaussian hill with Courant number equal to 4.0. It can be seen that the SL3T solution shows better
preservation of the shape of the Gaussian hill, with less spatial spreading, although the positioning
of the hill center had larger errors than the other three schemes. Both the SL2T and the SL2S3T
solutions presented ‘tails’ with larger spatial errors in the former. Except for the ‘tail’ the spatial
spreading of the hill in the SL3T and the SL2S3T solutions was similar.
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Figure 5. Analytical (solid lines) and numerical (dashed lines) solutions using the SL2T scheme
(a), the SL2TS scheme (b), the SL3T scheme (c) and the SL2S3T scheme (d) after 10 revolutions
of the Gaussian hill, for the experiments with the 67×67 grid points mesh with time step set

to produce Courant number equal to 4.0.

Numerical results of the simulations in the 33×33 grid points grid, with more strongly curved
flow trajectories, are presented in Table IV. The SL2T scheme produced larger numerical dispersion
after one revolution, but equal or smaller dispersion after 10 revolutions than the other two schemes.
The SL3T performed better than the SL2S3T scheme, especially in the case with C=10.0 after 10
rotations. The results were in general better in this case than those for the 67×67 grid points domain.

The SL3T scheme had better ‘mass’ conservation after one revolution for all Courant numbers.
After 10 revolutions the SL3T solutions were in general better than those of the other schemes.

After one revolution the amplitude preservation improves with increasing Courant number
whereas after 10 revolutions it improves with increasing �t only for the SL3T scheme. The results
are in general better in this domain than in the larger ones. The three-time level schemes performed
better than the two-time level ones.

The SL2S3T scheme produced equal or better correlation values than the other schemes in all
cases, except for 10 revolutions with Courant number 10.0, where the SL2TS scheme had better
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performance. For increasing �t the SL3T scheme was the one that showed greater growth of phase
errors.

Figure 6 shows the analytical and the numerical solutions with C=4.0 after 10 revolutions of the
Gaussian hill in the 33×33 grid points mesh. In this case with larger flow curvatures the SL2S3T
performed better than the other schemes, with good shape preservation, less spatial spreading of
the hill and better positioning of the hill center. The SL3T solution was the one with greater error
in the positioning of the hill center.

In all domains the Eulerian solution presented greater numerical dispersion and phase errors than
the semi-Lagrangian schemes. Except for the 33×33 grid points mesh at Courant number equal
to 1.0, the Eulerian method presented larger ‘mass’ conservation errors than all semi-Lagrangian
schemes. However, it produced better (average) amplitude conservation than the semi-Lagrangian
schemes for all cases. This is due to the fact that the spatial interpolation procedure of the

Figure 6. Analytical (solid lines) and numerical (dashed lines) solutions using the SL2T scheme
(a), the SL2TS scheme (b), the SL3T scheme (c) and the SL2S3T scheme (d) after 10 revolutions
of the Gaussian hill, for the experiments with the 33×33 grid points mesh with time step set

to produce Courant number equal to 4.0.
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semi-Lagrangian schemes causes damping of the solution. Higher-order interpolations could reduce
the damping. However, such interpolations, in general, have a higher computational cost.

4.2. Non-linear advection experiments

The conservation properties of the semi-Lagrangian schemes will be assessed by running exper-
iments in domains defined by NX×NY grid points along the x and y directions, respectively,
where the initial condition is set by the following streamfunction, which has the same functional
form of the one used by Arakawa and Lamb [14]:

�i, j =� sin

(
� ·i
nx

)[
cos

(
� · j
2 ·ny

)
+0.1 cos

(
� · j
ny

)]
(34)

where � is the amplitude (constant); nx=NX−1; ny=(NY−1)/2; i : 0, nx; j :−ny, ny; and �=0
along the boundary.

All domains have uniform grid spacing �x=�y=5000m and NX=129. Three experimental
domains were set with different values for NY: 129 for the smaller curvature case; 97 for the
medium curvature case and 65 for the larger curvature case. The amplitude � was adjusted in
each case in order to keep the maximum speed between 10.5 and 11.5m/s. Figure 7 shows the
three initial streamfunctions for the non-linear advection experiments.

Control runs for the three domains were performed, with the use of the leapfrog scheme and the
Arakawa discretization scheme (Equation (28a)) to solve the Eulerian form of the relative vorticity

Figure 7. Initial streamfunction fields for the non-linear advection experiments: 129×129 grid points
mesh (a), 129×97 grid points mesh (b), and 129×65 grid points mesh (c).
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Figure 8. Final streamfunction field (30 days integration time) for the non-linear advection experiment
with the 129×65 grid points mesh, using the Eulerian leapfrog method.

conservation Equation (25), for an integration time of 30 days, with �t set to obtain Courant
number C=0.6. It is important to point out that even with the use of the Arakawa discretization
scheme, non-linear instability caused by aliasing could be controlled only for Courant number as
small as 0.6. With time steps larger than that the simulation ‘blew up’ before completing two days
of integration time. The use of a high-frequency time filter such as the Robert-Asselin filter [17]
or the inclusion of explicit diffusion terms in the governing equations [18] could help to control
the non-linear instability. However, in this study we are just interested in producing a solution to
be used as reference for the semi-Lagrangian experiments. Figure 8 shows the final streamfunction
field for the 129×65 grid points mesh. It can be seen that, except for some damping of the
maximum at the domain center, there is no significant change in the shape of the streamfunction
after the 30 days integration. Figure 9 presents the temporal evolution of the domain averages of
enstrophy, kinetic energy (per unit mass), and vorticity from simulations with the Eulerian scheme
for the three domains. It can be seen that there is a reasonable conservation of those quantities
along the integration period.

The experiments with the semi-Lagrangian schemes were performed to solve the relative vorticity
conservation equation in its Lagrangian form (Equation (23)). Time step was adjusted to produce
Courant numbers 0.6, 2.0, 4.0, 6.0, 8.0 and 10.0, respectively. The iteration procedure used to
calculate the length of the particle displacement was the same used for the linear advection
experiments. The integration time was 30 days. When the integration time reached 10, 20 and 30
days, domain averages of enstrophy, kinetic energy (per unit mass) and vorticity were calculated.
After that, the ratios of those values to the corresponding values at the initial time were obtained.
In a perfectly conserving scheme such a ratio should be equal to 1.0. Values greater than 1.0
indicate increase of the domain-averaged quantity, whereas values less than 1.0 indicate damping.

The results of the simulations are presented in Figures 10–12, where, for each Courant number
and each numerical scheme, the three adjacent bars with the same filling pattern represent the ratios
to the initial values of the averaged quantities, after 10, 20 and 30 days of integration (from the left
to the right), respectively. In all experiments the values of the ratios to the initial value of the average
enstrophy for the leapfrog scheme were equal to 1.0, showing that the scheme correctly conserves
the domain-averaged enstrophy. For that reason, those results are not presented in the figures.

Figure 10 shows the results of the experiments for the 129×129 grid points mesh, which has
smaller flow curvatures. The enstrophy bar chart (Figure 10(a)) shows that the semi-Lagrangian
schemes have a similar performance for Courant numbers up to 4.0. As the Courant number
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Figure 9. Temporal evolution of domain averaged enstrophy (a), kinetic energy per unit mass (b),
and vorticity (c) with the use of the Eulerian leapfrog method, for the three computational
domains: 129×129 grid points mesh (solid lines), 129×97 grid points mesh (dashed lines),

and 129×65 grid points mesh (dot-dashed lines).

increases the errors of the SL2T, the SL2TS and the SL3T schemes increase continuously, whereas
for the SL2S3T scheme there is no error growth for Courant numbers greater than 6.0. The SL2T
and the SL2TS schemes start presenting significant error growth at Courant number 6.0. It is
apparent that the SL3T scheme is more sensitive to cumulative errors at large Courant numbers,
since the conservation errors increase significantly in time. The SL2S3T scheme, on the other
hand, was the least sensitive to cumulative errors.

Figure 10(b) shows the kinetic energy conservation results. For C=0.6 all methods produced
similar errors. The SL2S3T scheme was less sensitive to increasing Courant number and cumulative
errors than the other schemes. It performed equally or better than the other schemes for all Courant
numbers, except 6.0, when the SL3T scheme produced smaller errors. The SL2T and the SL2TS
schemes produce significant errors at C=6.0, which increase with increasing time step. Again the
SL3T scheme was the most sensitive to cumulative errors for C=10.0.
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Figure 10. Ratio of domain averaged enstrophy (a), kinetic energy per unit mass (b), and vorticity (c) to the
corresponding initial values, after 10, 20 and 30 days of integration time, for the 129×129 grid points

mesh. Each bar filling pattern represents a different numerical scheme.

Figure 10(c) presents the vorticity conservation results for the experiments with the 129×129
grid points mesh. It can be seen that, except for C=6.0, the SL2S3T scheme performed equally
or better than the other schemes, especially for large Courant numbers. Again, the SL3T scheme
was the most sensitive to increasing time step, at large Courant numbers, as well as to cumulative
errors. Interestingly, the vorticity conservation errors of the SL2S3T scheme decrease for increasing
Courant numbers. For all conservation quantities, the SL2T and the SL2TS schemes presented
much larger errors than the SL2S3T scheme at C=10.0.

Figure 11 shows the results for the experiments with the 129×97 grid points mesh, which has
moderate flow curvature. The behavior of the enstrophy conservation errors (Figure 11(a)) was
similar to that observed in the previous experiment, with the SL2S3T scheme performing equally
or better than the other schemes, except for C=6.0. The SL3T scheme showed larger errors in this
domain than in the one with smaller flow curvature, whereas the SL2T, the SL2TS and the SL2S3T
schemes did not present significantly larger errors in this case. However, similar to the previous
case, the SL2T and the SL2TS schemes start presenting significant error growth at C=6.0.
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Figure 11. Ratio of domain averaged enstrophy (a), kinetic energy per unit mass (b), and vorticity (c) to
the corresponding initial values, after 10, 20 and 30 days of integration time, for the 129×97 grid points

mesh. Each bar filling pattern represents a different numerical scheme.

The kinetic energy conservation errors (Figure 11(b)) obtained for Courant number equal to 0.6
are slightly larger than those in the smaller flow curvature domain, with the Eulerian simulation
producing larger errors than the semi-Lagrangian schemes. The SL2S3T scheme performed equally
or better than the other schemes in all cases, and the two-time level and the SL3T schemes showed
to be more sensitive to increasing time step as well as to cumulative errors. For this domain, the
SL2T, the SL2TS and the SL2S3T schemes presented errors slightly larger than those of the first
experiment, with the two-time level schemes producing large errors for Courant number equal or
greater than 6.0. The SL3T scheme however produced much larger kinetic energy errors in this
case.

The vorticity conservation errors results (Figure 11(c)) for the 129×97 grid points mesh have
the same general behavior of the previous experiment, with the SL2S3T scheme performing equally
or better than the other schemes for all cases, except for C=6.0, where the SL2T and the SL2TS
schemes produced better conservation. Again, the SL3T scheme showed to be highly sensitive to
cumulative errors for large Courant numbers. The errors of the two-time level and the SL2S3T

Copyright q 2009 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2009; 61:995–1028
DOI: 10.1002/fld



1020 R. C. DE ALMEIDA ET AL.

Figure 12. Ratio of domain averaged enstrophy (a), kinetic energy per unit mass (b), and vorticity (c) to
the corresponding initial values, after 10, 20 and 30 days of integration time, for the 129×65 grid points

mesh. Each bar filling pattern represents a different numerical scheme.

schemes were a little larger than in the first experiment, and the SL3T scheme produced much
larger errors for this domain with moderate flow curvature. For the three averaged quantities, the
SL2T and the SL2TS errors were much larger than those of the SL2S3T scheme for C=10.0.

Figure 12 presents the results the results of the experiments with the 129×65 grid points mesh,
which has stronger flow curvature. The general behavior of the numerical schemes was the same
observed in the previous experiments. The most noticeable feature was that the SL2S3T scheme
presented significantly smaller vorticity conservation errors for large Courant numbers in this
case than in the previous ones. Except for enstrophy, the SL2S3T scheme showed equal or better
conservation results than the Eulerian scheme, at all Courant numbers. The SL2T and the SL2TS
schemes in this case also started showing significant sensitivity to increasing time step at Courant
number 6.0. One more time the SL3T scheme showed to be highly sensitive to increasing �t at
large Courant numbers, as well as to cumulative errors. The SL2S3T scheme performed equally
or better than the other semi-Lagrangian schemes at most Courant numbers, particularly the larger
ones.
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4.3. Idealized frontogenesis experiments

The ability of the semi-Lagrangian schemes to represent strongly curved structures with sharp
spatial gradients will be evaluated. The computational domain was set with 101×101 grid points,
in the x and y directions, respectively, with grid spacing �x=�y=50 non-dimensional units.
Constant inflow, gradient outflow boundary conditions were applied along all boundaries [19].

Time step was set by calculating the maximum value of the tangential velocity VT and then
adjusting �t to produce Courant numbers C=1.0, 2.0, 4.0, 6.0, 8.0 and 10.0, respectively. The
experiments were performed to produce six revolutions around the domain center of a fluid particle
placed at the distance from the center with the maximum value of VT.

The performances of the numerical schemes were evaluated by calculating the sum of the grid
point values of the scalar field Q, which should equal zero in a perfectly antisymmetric solution.
Also, the values of the magnitude of the gradient of the scalar field |∇Q| at the domain central
grid point were calculated. Its value should be a constant equal to 1.0 for all times, according to
the analytic solution for the problem.

Figure 13 presents the solutions obtained for the idealized frontogenesis obtained with the use
of the Eulerian (leapfrog) scheme, with C=1.0. Figure 13(a) shows the initial Q field, and Figures
13(b), (c) and (d) show the scalar field after one, three and six revolutions, respectively. It can
be seen that there is an increasing presence of numerical noise in the solution, with an almost
complete loss of the spiral structure in the central part of the domain as the simulation advances
in time.

Figure 14 presents the Q field after three revolutions, for the semi-Lagrangian solutions, with
time step set for Courant number 4.0. There are no significant differences among the results, except
for a slight smoothing of the central part of the Q field for the SL3T scheme (Figure 14(c)) as
compared to the solutions obtained with the other schemes.

Figure 15 presents the temporal evolution of |∇Q| at the domain center obtained for the simu-
lations with the semi-Lagrangian schemes, for Courant number varying from 1.0 up to 10.0. It is
expected that its value remains constant equal to 1.0 during the simulation. The graphs show that for
all schemes |∇Q| varies in time at the central grid point, due to the difficulty of the numerical solu-
tions to handle the increasing scale-collapse that occurs due to the continuous inward spiraling of the
Q field. The evolution of |∇Q| for C=1.0 is similar for all schemes. The two-time level schemes
produce better results for Courant number 6.0, whereas the SL3T scheme solution is more accurate
for C=2.0 and the SL2S3T is better for C=4.0. For Courant numbers 8.0 and 10.0 none of the
schemes perform well, with the SL3T producing the least accurate results for those values of C .

Figure 16 presents the sum of final grid point values of Q after six revolutions. It is expected
that this sum remains equal to zero along the simulation. All schemes produce negative values
for the sum of Q, with the two-time level schemes producing the largest errors, for all Courant
numbers. The three-time level schemes have similar performances. The decrease of the errors
with increasing values of C is faster for the three-time level schemes than it is for the two-time
level ones.

4.4. Computational cost

One of the most important advantages of the use of the semi-Lagrangian method is the possibility
of using long time steps without the constraint of the CFL condition. However, the need for spatial
and/or temporal interpolations of the semi-Lagrangian schemes imposes a computational overhead
that must be assessed. We will analyze this aspect based on the processing speedup obtained by
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Figure 13. Initial condition (a) and Eulerian solutions of the idealized frontogenesis problem after one
(b), three (c) and six (d) revolutions around the center. Dashed lines indicate negative values of Q.

the semi-Lagrangian schemes with respect to the Eulerian solutions. The processing speedup will
be defined as the ratio between the CPU time consumed by the Eulerian solution at C=0.6, and
the CPU time consumed by a semi-Lagrangian solution. Values greater than 1.0 mean that the
semi-Lagrangian scheme demands a smaller computational cost whereas values smaller than 1.0
mean that the Eulerian solution is more economical from a computational point of view.

Table V presents the processing speedup of the semi-Lagrangian schemes for the linear advection
experiments, with the time step set to obtain Courant numbers equal to 1.0 and 10.0, respectively.
It can be seen that for C=1.0, the Eulerian solutions are much more economical than the semi-
Lagrangian ones by a factor ranging from 4 to 10, approximately. The SL3T is the fastest semi-
Lagrangian schemes, followed by the SL2T scheme and then by the SL2S3T and the SL2TS
schemes. When the time step was set to produce C=10.0, the SL2T and the SL3T schemes
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Figure 14. Semi-Lagrangian solutions of the idealized frontogenesis problem after four
revolutions around the center using the SL2T scheme (a), the SL2TS scheme (b), the SL3T
scheme (c) and the SL2S3T scheme (d), with time step set to produce Courant number

equal to 4.0. Dashed lines indicate negative values of Q.

produced a very small speedup with respect to the Eulerian scheme. The computational cost of
the SL2TS and the SL2S3T schemes remained greater than that of the Eulerian scheme, except
for the 99×99 grid with C=10.0 for the SL2TS scheme. However, it has to be considered that
the Eulerian scheme produces, in general, much more numerical dispersion, with very large RMS
and phase errors. In that case the additional computational cost of the semi-Lagrangian schemes
is worthwhile since their solutions are more accurate.

The linear problem may not be an appropriate reference for evaluating the relative efficiency
of the different schemes because the velocity field is constant in time. In the non-linear advec-
tion case, on the other hand, the u and v velocity components have to be calculated at each
time step. Besides, the use of finite differences for spatial discretization makes necessary the
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Figure 15. Temporal evolution of |∇Q| at the central grid point using the SL2T scheme
(a), the SL2TS scheme (b), the SL3T scheme (c) and the SL2S3T scheme (d), with time

step set to produce Courant numbers ranging from 1.0 to 10.0.

use of some aliasing control technique to avoid non-linear instability of the Eulerian solution,
which imposes a computational overhead on that scheme. This situation is more realistic than the
linear advection case.

Figure 17 presents the processing speedup of the semi-Lagrangian schemes with respect to the
Eulerian solutions for the non-linear advection experiments. For simplicity the values presented in
the graph represent the average speedup for the three meshes, since the values did not vary much
for each domain configuration. It can be seen that in the non-linear advection experiments, for
Courant numbers as small as 4.0 the semi-Lagrangian schemes have a computational cost smaller
than that of the Eulerian scheme. The SL3T scheme is the one that yields larger speedups, except
for Courant number 10.0, where the SL2TS scheme was more efficient. The SL2T and the SL2S3T
schemes yield about the same efficiency. In all cases the SL2TS scheme is more efficient than
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Figure 16. Sum of the final values of Q as a function of Courant number after six revolutions around the
center. Each bar filling pattern represents a different semi-Lagrangian scheme.

Table V. Processing speedup of semi-Lagrangian schemes with respect to the Eulerian
solution for experiments with Courant number equal to 1.0 and 10.0, with the three

computational domains, for linear advection experiments.

Mesh SL2T SL2TS SL3T SL2S3T

Semi-Lagrangian scheme
Courant number=1.0
33×33 0.10 0.07 0.20 0.08
67×67 0.12 0.07 0.23 0.09
99×99 0.15 0.10 0.28 0.12

Courant number=10.0
33×33 1.11 0.79 1.11 0.64
67×67 1.21 0.82 1.21 0.69
99×99 1.52 1.04 1.52 0.88

the SL2T and the SL2S3T scheme. Although the SL3T scheme is the one with larger speedups
it is also the one that produces less accurate solutions for large Courant numbers. The two-time
level schemes, on the other hand, are the ones that start producing errors larger than those of the
Eulerian scheme at small Courant numbers. The SL2S3T scheme, in general, produces kinetic
energy and vorticity errors equal or smaller than those of the Eulerian scheme both for small and
large Courant numbers, even in the presence of strongly curved flow.

For the experiments of the idealized frontogenesis problem, the SL2S3T scheme, on the average,
spent about 85% more computer time to run the experiments than the other semi-Lagrangian
schemes, which had all about the same computational cost to produce the simulations.
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Figure 17. Average processing speedup of the semi-Lagrangian schemes with respect to the Eulerian
leapfrog method. Each filling pattern represents a different semi-Lagrangian scheme.

5. DISCUSSION AND CONCLUSIONS

This work proposed a new two-step three-time level semi-Lagrangian scheme (SL2S3T) for calcu-
lation of particle trajectories. The scheme has O(�t2) global time truncation error and is intended
to yield accurate determination of particle departure points when using large time steps, especially
in flows with significant curvature.

Experiments were performed both for linear and non-linear idealized advection problems as
well as for an idealized frontogenesis problem. The results of the experiments with the SL2S3T
scheme were compared with those obtained with the use of an Eulerian leapfrog scheme and three
other semi-Lagrangian schemes: the three-time level scheme of Robert (SL3T), the two-time level
scheme of MacDonald and Bates (SL2T) and the two-time level scheme of Hortal (SL2TS).

In the linear experiments a Gaussian hill was translated along circular paths with three different
advection radii. The results showed that the SL2S3T scheme produced equal or smaller RMS errors
than the other schemes, for all experiments. The SL3T scheme performed equal to the SL2S3T
scheme only at small Courant numbers. The SL2T and the SL2TS schemes produced RMS errors
larger than those of the SL2S3T scheme in most of the cases. The Eulerian solution was the one
with larger RMS errors. The experiments showed that increasing flow curvatures yield larger RMS
errors for all schemes.

Regarding accuracy and conservation of properties of the schemes, the experiments showed that
in some cases either the two-time level schemes or the SL3T scheme performed better, but in
those cases the SL2S3T scheme presented errors comparable to those of the other schemes. The
most remarkable feature of the SL2S3T scheme was its high accuracy in the representation of the
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angular displacement of the Gaussian hill, which was superior to the other schemes in all cases,
especially at large Courant numbers.

The non-linear advection experiments consisted of solving the relative vorticity conservation
equation in three different domains, which were set to have different flow curvatures. The objective
of those experiments was to assess the conservation properties of the semi-Lagrangian schemes.
The experiments showed that all schemes produced larger errors for increasing flow curvatures. By
and large, the SL2S3T scheme performed equally or better than the other schemes, both for small
and moderate time steps. For large Courant numbers its performance was significantly better than
those of the two-time level and the SL3T schemes. The errors produced by the SL2S3T scheme
did not change much for increasing Courant number and, in some cases, decreased, due to the
non-monotonic behavior of the error of semi-Lagrangian schemes with respect to time step size.

The computational cost of the semi-Lagrangian schemes was also evaluated. In the linear
advection experiments the Eulerian solution was much more efficient than the semi-Lagrangian
ones. However, the semi-Lagrangian solutions were far more accurate. In the non-linear advection
cases the SL3T and the SL2TS schemes were the most efficient. However, both had larger errors
than the SL2S3T scheme at large Courant numbers. The experiments showed that the use of the
SL2S3T scheme with large time steps would not compromise the solution accuracy.

The idealized frontogenesis experiments showed that all semi-Lagrangian schemes produced
better results than the Eulerian method. For the semi-Lagrangian schemes, the SL3T was the one
that produced the least accurate results regarding the conservation of the central gradient. The
three-time level schemes produced more accurate global representation of the advected scalar field
than the two-time level schemes.

The results of this study showed that the most relevant feature of the SL2S3T scheme is its robust-
ness, since it consistently presents good performance both for small and large Courant numbers,
in the presence of weakly as well as strongly curved flows as well as sharp gradients. Therefore,
the two-step three-time level semi-Lagrangian scheme may be a good choice to obtain accurate
numerical simulations at low computational cost, making it competitive with other presently used
particle trajectory calculation schemes.
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